Who cares about Sarcastic Tweets? Investigating the Impact of Sarcasm on Sentiment Analysis

نویسندگان

  • Diana Maynard
  • Mark A. Greenwood
چکیده

Sarcasm is a common phenomenon in social media, and is inherently difficult to analyse, not just automatically but often for humans too. It has an important effect on sentiment, but is usually ignored in social media analysis, because it is considered too tricky to handle. While there exist a few systems which can detect sarcasm, almost no work has been carried out on studying the effect that sarcasm has on sentiment in tweets, and on incorporating this into automatic tools for sentiment analysis. We perform an analysis of the effect of sarcasm scope on the polarity of tweets, and have compiled a number of rules which enable us to improve the accuracy of sentiment analysis when sarcasm is known to be present. We consider in particular the effect of sentiment and sarcasm contained in hashtags, and have developed a hashtag tokeniser for GATE, so that sentiment and sarcasm found within hashtags can be detected more easily. According to our experiments, the hashtag tokenisation achieves 98% Precision, while the sarcasm detection achieved 91% Precision and polarity detection 80%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sentiment Analyzer with Rich Features for Ironic and Sarcastic Tweets

Sentiment Analysis of tweets is a complex task, because these short messages employ unconventional language to increase the expressiveness. This task becomes even more difficult when people use figurative language (e.g. irony, sarcasm and metaphors) because it causes a mismatch between the literal meaning and the actual expressed sentiment. In this paper, we describe a sentiment analysis system...

متن کامل

Sarcasm as Contrast between a Positive Sentiment and Negative Situation

A common form of sarcasm on Twitter consists of a positive sentiment contrasted with a negative situation. For example, many sarcastic tweets include a positive sentiment, such as “love” or “enjoy”, followed by an expression that describes an undesirable activity or state (e.g., “taking exams” or “being ignored”). We have developed a sarcasm recognizer to identify this type of sarcasm in tweets...

متن کامل

'Who would have thought of that!': A Hierarchical Topic Model for Extraction of Sarcasm-prevalent Topics and Sarcasm Detection

Topic Models have been reported to be beneficial for aspect-based sentiment analysis. This paper reports a simple topic model for sarcasm detection, a first, to the best of our knowledge. Designed on the basis of the intuition that sarcastic tweets are likely to have a mixture of words of both sentiments as against tweets with literal sentiment (either positive or negative), our hierarchical to...

متن کامل

Sarcasm SIGN: Interpreting Sarcasm with Sentiment Based Monolingual Machine Translation

Sarcasm is a form of speech in which speakers say the opposite of what they truly mean in order to convey a strong sentiment. In other words, ”Sarcasm is the giant chasm between what I say, and the person who doesn’t get it.”. In this paper we present the novel task of sarcasm interpretation, defined as the generation of a non-sarcastic utterance conveying the same message as the original sarca...

متن کامل

An Empirical, Quantitative Analysis of the Differences Between Sarcasm and Irony

A variety of classification approaches for the detection of ironic or sarcastic messages has been proposed in the last decade to improve sentiment classification. However, despite the availability of psychologically and linguistically motivated theories regarding the di↵erence between irony and sarcasm, these typically do not carry over to a use in predictive models; one reason might be that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014